Course Co	de: MSBCCC101T	Course Title: Biomolecules	
Course Cr	edit: 4	Total contact hours: 60 Hrs	
Sr. No.	o. Course Contents (Topics & subtopics)		Reqd. hours
Unit I	The molecular logic	c of life	15 Hrs
	The chemical unity of diverse living organisms, composition of living matter. Macromolecules and their monomeric subunits. Properties of Water: With interactions in aqueous systems. Ionization		
	of water, weak acids	and weak base.	
	The pH scale, measu	rement of pH, pH metry, acid base titration	
	curves. Buffers, biol	ogical buffer systems	
UNIT II	Carbobhydrates		15 Hrs
	Classification, chara	cteristics and functions of monosaccharides,	
	disaccharides - polys	saccharides.	
	· · · ·	nomers, Chiral carbon atom, Chair and boat	
		pyranose and Fructopyranose	
	-	rates: Classification and general functions of	
	-	c acid and mucopolysaccharides. Structure and	
	•••	proteins and proteoglycans. Blood group sugar	
	compounds, sugar nucleotides, bacterial cell wall components.		
UNIT III	Lectins - specificity, characteristics and uses, pectin, xylans.		15 Hrs
	Lipids Definition classifie	ation, characteristics and functions of lipids	15 115
		formula, nomenclature and chemical properties.	
	• •	nd properties of simple, complex, acylglycerols,	
		sphingolipids, waxes, terpenes, steroids and	
	prostaglandins	pringo ipras, wares, terpenes, steroras ana	
UNIT IV	Nucleic acids		15 Hrs
	Structure of nucleosi	ide, nucleotide. De novo and salvage pathways of	
	nucleotide synthesis.		
	Experimental eviden	ce for nucleic acids as genetic material.	
	•	of DNA, Watson and Crick model of DNA.	
		of DNA, Tm and its relation to GC content	
	-	natic degradation of nucleic acids	
	Suggested readings		
	-	iples of Biochemistry by D. L. Nelson and M. M.	
	Cox.	ubart Stryar	
	2. Biochemistry by I3. Biochemistry by Z	•	
	4. Biochemistry by C	-	
	5. Biochemistry by V		

M. Sc. Biochemistry Part I [Semester I]

Course Co	de: MSBCCC102T Course Title: Cell biology and Microbiology		
Course Cre	edit: 4 Total contact hours: 60 Hrs		
Sr. No.	Course Contents (Topics & subtopics)	Reqd. hours	
UNIT I	CELL BIOLOGY		
	Cell as a basic unit of life.		
	Cell organization of prokaryotic and eukaryotic cells. Structure and		
	functions of cell and cell organelles -mitochondria, chloroplast,		
	lysosomes, golgi bodies, cytoskeleton, cell wall, nucleus.		
	Plasma Membrane: Organisation of lipids in micelles, liposomes.		
	Components, properties and characterization of lipid bilayer. Assyme	•	
	fluidity, lipidlipid and lipid-protein interactions. Merits and demerits	of	
	various membrane models.		
	Cell cycle, cell division - mitosis and meiosis.		
UNIT II	Membrane transport	15 Hrs	
	Transport across biomembranes: Active, passive and facultative trans	sport	
	and ion channels. Symport and antiport system.		
	Transport of water, glucose and amino acids.		
	Organisation, mechanism and significance of Na ⁺ - K ⁺ ATPase, Na ⁺		
	ATPase, and Ca ⁺⁺ - ATPase pumps. Special bacterial transport system	ms.	
	Permeases, Phosphotransferase system, transport through binding		
	proteins.		
	Transport of macromolecules. Endocytosis, pinocytosis and		
	phagocytosis, receptor mediated endocytosis, transcyctosis.		
	Fates of receptors and ligands.		
UNIT III	Cell signaling and cytoskeleton	15 Hrs	
	Signaling molecules and cell surface receptors – hormones, growth		
	factors		
	Receptor Families : G Protein – coupled receptors, Activation &		
	inhibition of adenyl cyclase, Activation of phospholipase C Activatio	on of	
	gene transcription – CREB proteins		
	Cell adhesion – Cadherins, Selectins and Integrins		
	Extracellular matrix of cells – Proteoglycans, collagens, elastin,		
	fibronectin and laminin		
	Cytoskeleton- microtubules, microfilaments and intermediary filame		
	Role of cytoskeleton in maintenance of cell shape, providing structur		
	rigidity, cell movement, phagocytosis, cell viscosity, transport and ot	ther	
	functions.		
	Cell-cell interactions - tight junctions, gap junctions, desmosomes an	nd	
••••	spot desmosomes.		
UNIT IV	Microbiology	15 Hrs	
	Structure, classification and general characteristics of Bacteria,		
	Mycoplasma, Protozoa, archea, yeast and fungi.		

Methods in microbiology: Pure culture techniques, principles of	
microbial nutrition, Sterilization methods, Microbial contamination	
control and Sterility testing.	
Microbial growth: Definition of growth, mathematical expression of	
growth, growth curve, measurement of growth and growth yield,	
synchronous growth, continuous culture.	
Virology: Classification, General properties and structure of plant,	
animal and bacterial viruses, Bacteriophages - lytic cycle & lysogeny,	
Oncogenic viruses.	
Cultivation of viruses: cell culture, chick embryo and animal inoculation.	
Persistent, chronic and acute viral infections. Host- Virus Interactions,	
Mechanism of interferon and antiviral therapy.	
Suggested readings	
1. Textbook of Medical Physiology by A.C. Guyton and J. E. Hall, W.B.	
2. Saunders Publication, 9th Edition, 1996.	
3. Physiology Illustrated by Lipfold and Cogdell.	
4. Cells by David Prescott.	
5. Cell Structure and Function by Loewy and Gallant.	
6. Essential Cell Biology by Albert Bray et al, Garland Publication New	
York 1997	
7. Introduction to Modern Virology by Dimmock and Primrose.	
8. Molecular Virology by Alan Cann.	
9. Madigam M.T., Martinko J.M and Parker J. (2001) Biology of	
Microorganisms 9th ed. Prentice Hall Int. (U.K.) Ltd, London.	
10. General Microbiology by Stanier.	

Course Co	de: MSBCCC103T	Course Title: Amino acids & Protein Biochemistry	
Course Cre	edit: 4	Total contact hours: 60 Hrs	
Sr. No.	Со	urse Contents (Topics & subtopics)	Reqd. hours
UNIT I	AMINO ACIDS:		15 Hrs
	Chemical structure	and general properties, pI of amino acids, General	
	metabolism scheme	of amino acids and Urea cycle.	
	PROTEINS:		
	Classification- size, shape, degree of association, complexity.		
	Classification of pro	oteins according to biological functions (Enzymes,	
	transport, storage, c	ontractile, structural, defense and regulatory)	
	Structure of peptide	bond - restricted rotation, cis - trans bending,	
	Ramchandran plot. Peptides.		
UNIT II	Secondary structure - alpha helix and beta pleated structure, triple helix		15 Hrs
	(collagen) and supe	rsecondary structures.	
	Tertiary structure -	forces stabilising tertiary structure,	

	unfolding/refolding experiment, prediction of secondary and tertiary	
	structure. Dynamics of protein folding, role of molecular chaperones in	
	protein folding, Lysosomal and membrane proteins.	
	Quaternary structure - forces stabilising quaternary structure. Structure	
	function relationship - myoglobin and hemoglobin.	
	Techniques for studying primary sequence of proteins, experimental	
	methods, end group analysis, finger printing and sequenators.	
UNIT III	Chemical synthesis of peptides/ solid phase automated synthesis,	15 Hrs
	prediction of conformation from amino acid sequence, zymogens and	
	their conversion into active proteins Protein evolution - phylogenic tree,	
	convergent and divergent trees, sequence analysis, comparison matrix,	
	Dot matrix and substitution matrix.	
	Protein turnover: Ubiquitination, proteasome and protein degradation.	
UNIT IV	Concept of prosthetic group, apoenzyme, holoenzyme, enzyme.	15 Hrs
	Coenzyme: Vitamins as coenzymes: sources, requirements, functions and	
	deficiency symptoms of water soluble vitamins. structure and	
	biochemical role. Assay of vitamins.	
	Cofactors: Role of trace elements, their bound forms in biological	
	systems and in enzyme structure and function.	
	Suggested readings	
	1. Lehninger's Principles of Biochemistry by D. L. Nelson and M. M.	
	Cox, CBS	
	Publications, 2000	
	2. Biochemistry by Lubert Stryer, 4th Edition	
	3. Biochemistry by David Rawn	
	4. Principles of protein structure by Shulz and Schirmer	
	5. Fundamentals of Enzymology by Royer	
	6. Fundamentals of enzymology by Price and Steavens	

Course Code:MSBCIE101T		Course Title:	
		Bioorganic Chemistry and Nanobiotechno	logy
Course Cre	edit: 4	Total contact hours: 60 Hrs	
Sr. No. Course Contents (Topics & subtopics)		ourse Contents (Topics & subtopics)	Reqd. hours
UNIT I	Biochemical	Basis of Evolution	15 Hrs

	Theories of Evolution – Time scale and spontaneous origin of life Genesis of oxygen generating photosynthesis & aerobic respiration. Methanogens – evolution of prokaryotes, protists & eukaryotes Oparin's Hypothesis, Miller Experiment, Smith's Model, RNA first model. Theories regarding origin of mitochondria and chloroplast Evolution of proteins and nucleic acid – elastic analysis. Evolution of introns Evolutionary view of exon domain relationships Process or Origin of life of Eukaryotes, Molecular Evolution of Proteins	
UNIT II	Bioenergetics	15 Hrs
	Chemistry of Water. Laws of thermodynamics as applied to biological systems, enthalpy, entropy, free energy, standard free energy Role of High Energy phosphates in Bio-energetics and energy capture, Theories of ATP Biosynthesis Electron Transport Chain in Plants, Eukaryotes and Prokaryotes, Significance or Redox potentials, Mechanism of Oxidative Phosphorylation. Uncouplers and Inhibitors of energy transfer. Numerical problems based on the above	
UNIT III	Biosensors, Bioluminescence, Biotransformation & Biomimetics	15 Hrs
	 Biosensors: Basic principles and operation of biosensors, types of biosensors and applications of biosensors. Biosensors in diagnostics. Immobilization of enzymes for the fabrication of biosensors. Bioluminescence: History, Source of Bioluminescence material, examples of bioluminescence organism Mechanism of Bio-luminescence in specific organisms, Evolution and Bioluminescence. Use and applications of bioluminescence Biotransformation: Xenobiotic metabolism: phase I and phase II reactions, Biotransformation enzymes Microbial biotransformation: Biodegradation of pollutants: enzymes involved in microbial biotransformation, Types of biotransformation, methods of biotransformation- in situ and exsitu. Biomimetics: Introduction, Artificial life, Artificial intelligence, Nature as a model for structures and tools, Biologically inspired mechanisms and structures, Defense and attck mechanisms in biology, artificial 	

UNIT IV	Nanobiotechnology	15 Hrs			
	Nanomaterials: Types and synthesis methods. Top-down and				
	bottom up approach. Physical chemical and biological methods of				
	synthesis of nanomaterials. Advantages and disadvantages of				
	various synthesis methods. Use of bacteria, funfi, Plants, and products derived from them for nanomaterial synthesis.				
	Mechanism of synthesis of nanomaterials by biological systems.				
	Bioinspired nanomaterials: DNA and peptide based.				
	Interaction between biomolecules and nanoparticle surfaces.				
	Nanomaterials in food industry, Packaging, Environment,				
	agriculture and medical fields				
Suggested	5				
-		demic			
Press, 2013					
	nical calculations, 2nd Edition by Irwin H. Segel. John Wiley & Sons,				
0	1 5, ,	ublisher:			
W. H. Free					
	nistry. Jeremy M. Berg, John L. Tymoczco, and LubertStryer: W.H. Fre				
	nistry. (4th Ed.). Donald Voet, Judith G. Voet – Publisher John Wiley &				
	nes and their cellular functions- IB Filnean, R. Coleman and R.H. Mitc	hell,			
	kwell Scientific Publishers, Oxford, 3rd ed.				
	2nd edition A Molecular Approach Geoffrey M Cooper.Boston Univer-	rsity			
	(MA): Sinauer Associates 2000.ISBN-10: 0-87893-106-6				
	Molecular Biology. D. P. De Robertis. Lippincott Williams & Wilkins				
	BN: 9788184734508, 8184734506 Edition: 8th Edition, 2010.				
	9. Biotechnology by R. C. Dubey				
	netics: biologically inspired technologies Edited by Yoseph Bar-Cohen	, Taylor			
and Francis	s publishers				

Course Code: MSBCGE101T		Course Title: Pharmaceutical Biochemistry, Hun	nan
		Nutrition and dietetics	
Course	Total contact hours:	30Hrs	
Credit: 4			
Sr. No.	Course Contents (Topics & subtopics)		Reqd. hours
UNIT I	Pharmacokinetics and drug metabolism		15 Hrs
	Fundamental concep	ots in drug absorption, distribution, metabolism &	
	elimination (ADME) Kinetics of drug following different modes of		
	drug administration.		
	Introduction to important Pharmacokinetics parameters, PK of oral		

	administration & bioavailability, objectives of Pharmacokinetics Mechanism of Drug Action and structure-Function Relationship: Molecular basis of drug action & pharmacological selectivity Drug receptor theory, stimulus response, classification of receptors & strategy in receptor binding studies, receptor preparation & receptor	
	binding kinetics	
	Clinical research- Importance, significance & rationale, Models used in clinical research	
	Clinical Trials- Stages/ Phases I to IV, Ethical issues in clinical trials	
UNIT II	Nutrition and dietetics	15 Hrs
	Role of Carbohydrates, lipids, proteins, vitamins and minerals in	
	human nutrition.	
	Nutrition during pregnancy, lactation, infancy, childhood, adolescence,	
	adulthood, ageing.	
	Nutrition for health, weight management, Exercise, Sports performance	
	and bone health. Nutrigenomics: Nutrient gene interaction, Drug Nutrient Interaction	
	Food quality: Chemical and Biochemical Indices.	
	Obesity and Eating disorders (Anorexia nervosa, Bulimia nervosa)	
	Recommended Dietary allowances (RDA), factors affecting RDA,	
	Methods used to calculate RDA, Practical application of RDA,	
	Reference man and woman	
	Mid day programme	
	Food safety: Laws and regulations, regulatory agencies	
	Suggested readings	
	1. Anderson I et al. Nutrition in Health and Disease	
	2. Anita F.P., Clinical Dietetics and Nutrition's,	
	3. Bennion H., Clinical Nutrition,	
	4. Carolyn E., et al, Nutrition and Diet Therapy, 7th Ed.,2000, Delmer Publishers	
	5. Gopalan C et al, Dietary Allowances for Indians, NIH, Hyderbad. 26	
	6. Gopalan C et al, Nutritive Value of Indian Foods, 1988, NIH,	
	Hyderabad.	
	7. Kinney J.M. et.al, Nutrition and Metabolism in Patient Care, 19th	
	ed., 1999, W.B. Saunders and Co.	
	8. Robinson C.et al, Normal and Therapeutic Nutrition, 16th Ed., 1982,	
	Macmillan Publishing Co.	
	9. Shils M.E.et al, Modern Nutrition in Health and Disease, 1998, Lea and Febiger, Philadelphia.	
	10. Swaminathan M., Essentials of food and Nutrition, 2nd Ed., 1985,	
	Ganesh and Co.	
	11. Pharmaceutical chemistry, G Melentyeva L LAntonova Mir	
	Publishers, Moscow	
	12. Chemical Pharmacology, R B Barlow, 2nd Ed, Methven and CO.	

New Fetters Lane	
13. Medicinal Chemistry, Vol I, 3rd Ed, Alfred Burga, Wiley Inter	
sciences	
14. Pharmacology, B Suresh, 1st Ed. Shanti, Publication.	

Course Co	de: MSBCAE101T	Course Title: Biostatistics	
Course Credit: 2		Total contact hours: 30 Hrs	
Sr. No.	Cours	se Contents (Topics & subtopics)	
UNIT I	·	sample from population, Random sample. Iean, Median and Mode, Standard Deviation,	15
UNIT II	 Tests of Significance. Hypothesis testing:- Theory of errors- Type I and Type II errors, Null hypothesis, P values-one v/s two tail P values. t-test (paired & unpaired), Z-test, Chi square test. 		15
	Suggested Reading		
	Adequacy o sample si Chichester. 2. Machin, D., Campb Tables for the design of Oxford. 3. Quinn & Keough, E Biologists, Cambridge 4. Statistical methods Oliver Boyd publication 5. Statistical methods Goldsmith PL, Longm 6. Methods in biostation – BK Mahajan, Jaypee 7. Genetics and Biostat Kanyakumari 8. Statistical methods edition charles Griffin 9. Statistics for Biolog	in research and production – Davelr OL & nan stics for medical students and research workers e Brothers, New Delhi ntistics – MeyyanPillai, Saras Publication, in biological array – Davids J Finney, 3rd	

Semester- I Practicals

MSBCLB101P:

- 1. Estimation of:
 - 1. Proteins by Bradford
 - 2. Proteins by Folin-Lowry methods
 - 3. Amino acids by Ninhydrin method
 - 4. Total sugar content by Anthrone method
 - 5. Glucose by Folin-Wu methods.
 - 6. Phosphorus (P) by Fiske-Subbaraow Method.

MSBCLB102P:

- 1. Estimation of: (from blood/plasma/serum/urine)
- 2. Cholesterol by Zak and Zaltsky Method.
- 3. Copper (Cu) by Dithiocarbonate Method.
- 4. Microbiology techniques:

- ii. Spores Staining
- iii. Capsule Staining
- iv. Acid Fast Staining

MSBCLB103P:

1. Buffers and Microscopy:

pka values of Ala or Gly by Titration Curve

2. Proteins: Extraction, isolation, partial purification (of any), calculation of percentage

yield and performing a confirmatory test for the following -

- a. Casein from milk.
- b. Albumins and globulins from egg white.
- c. Proteins from germinating seeds.
- 3. Estimation of Sodium Benzoate from Jam/ Jelly

MSBCLB104P:

- 1. Percentage Purity of Starh from Starch Hydrolystate by Willstatter's method.
- 2. Estimation of Calcium (Ca) by Clark and Collip Method/ Trinder Method.
- 3. Estimation of Iron (Fe) by Dipyridyl Method.
- 4. Estimation of Triglycerides.
- 5. One numerical problem each on

- a. Measurement of Central Tendency (Mean, Median, Mode)
- Measurement of Dispersion/variability (Mean Deviation, Standard Deviation, Coefficient of variation).

Suggested Readings for Practical syllabus

1. J Jayaraman-Laboratory Manual in Biochemistry, New age international publishers.

2. Holme David J – Problem solving in analytical biochemistry, H & Longman Sc. And Tech, Essex

3. Ninfa Alexander J and Ballou David P – Fundamental Laboratory Approaches for Biochemistry and Biotechnology, Fitzgerald Science Press, Bethesda

4. Upadhyaya et al – Biophysical Chemistry, Himalaya Publishing Home, New Delhi

5. Rodney Boyer Experimental Biochemistry Pearson Publ. Sawheny and Singh

6. Practical Biochemistry by David Plummer

7. Henry Richard et al – Clinical Chemistry, Principles and Techniques, 2nd edition, Harper and Row, New York

8. Kamal SH – Clinical Biochemistry for Medical Technologies, Churchill Livingston, London

9. Rodrigues Fred K Carbohydrate chemistry with clinical correlations, New Age International, New Delhi

 John Bernard Henry, Clinical Diagnosis and Management by Laboratory Methods, Saunders publications, 20th edition

11. Total synthesis of natural products, Vol I-John Apsinon

12. Chemical Process Industries – Norris Shreeve& Joseph Brink

13. Roger's Industrial Chemistry Vol I & II – Edited by CC Furnas

14. Animal Biotechnology – Edited by AK Srivastava, oxford & IBH publishing Co, New Delhi, 2005

15. Proteins, Biochemistry & Biotechnology - Gary Walsh, John Wiley & Sons, 2002

16. Biotechnology, An Introduction – Susan R Barnum, Vikas Publishing House, International Student Edition

17. Enzymes, Biochemistry, Biotechnology, Clinical Biochemistry – Trevor Palmer, First East-West Press Ed. 2004.

18. Lemeshow S, Homer DW, Klar J and Lwanga SK, (1996) Adequacy o sample size in health studies. John Wiley and Sons, Chichester.

19. Machin, D., Campbell MJ, Fayers P, Pinol A., (1998) Statistical Tables for the design of Clinical Studies, Second Edition, Blackwell Oxford.

20. Quinn & Keough, Experimental Design and Data Analysis for Biologists, Cambridge University Press. <u>http://www.lacbiosafety.org/wp-</u>

21. Statistical methods for research workers – RA Fisher, 14th edition, Oliver Boyd publication

22. Statistical methods in research and production – Davelr OL & Goldsmith PL, Longman

23. Methods in biostatistics for medical students and research workers – BK Mahajan, Jaypee Brothers, New Delhi

24. Genetics and Biostatistics – MeyyanPillai, Saras Publication, Kanyakumari

25. Experimental Biochemistry, Theory and exercises in fundamental methods – Robert Switzer and Liam Garrity, 3rd edition, WH Freeman & Co. NY

26. Statistical methods in biological array – Davids J Finney, 3rd edition charles Griffin & co, London

27. Statistics for Biology – Bishop ON, 1983, Longman

28. A Textbook of Biostatistics by A Annadurai, New Age Publication

* Teachers may suggest alternative/additional practical/references.

Course Cod	le: MSBCCC201T Course Title: Enzymology	
Course Cre	dit: 4 Total contact hours: 60 Hrs	
Sr. No.	Course Contents (Topics & subtopics)	
Unit I	ENZYMES and ENZYME CATALYSIS	15 Hrs
	Classification- IUB system, rationale, overview and specific examples. Characteristics of enzymes, enzyme substrate complex. Concept of active site, binding sites, stereospecificity and ES complex formation. Effect of temperature, pH and substrate concentration on reaction rate. Activation energy. Transition state theory. Acid-base, Covalent and Nucleophilic catalysis. Factors affecting catalytic efficiency- proximity and orientation effects, distortion or strain. Chemical modification of enzymes. Isoenzymes and multiple forms of enzymes.	
UNIT II	ENZYME KINETICS Michaelis-Menten Equation - form and derivation, steady state enzyme kinetics. Significance of Vmax and Km. Bisubstrate reactions. Enzyme inhibition- types of inhibitors - competitive, non- competitive and uncompetitive. Enzyme activity, international units, specific activity, turnover number. Methods for studying fast reactions.	15 Hrs
UNIT III	STRUCTURE FUNCTION RELATIONSHIPS, ALLOSTERICINTERACTIONS and ENZYME REGULATIONLysozyme, phosphorylase, glutamine synthetase and phosphofructokinase. Multi enzyme complexes-pyruvate dehydrogenase and fattyacid synthetase; Na-K ATPase.Protein ligand binding including measurements, analysis of bindingisotherms, co-operativity, Hill and Scatchard plots and kinetics ofallosteric enzymes.Product inhibition, feedback control, enzyme induction andrepression and covalent modification. Allosteric regulation.	15 Hrs
UNIT IV	Immobilized Enzymes	15 Hrs

M. Sc. Biochemistry Part I [Semester II]

Relative practical and economic advantage for industrial use, effect of partition on kinetics and performance with particular emphasis on charge and hydrophobicity (pH, temperature and Km). Various methods of immobilization - ionic bonding, adsorption, covalent bonding (based on R groups of amino acids), microencapsulation and gel entrapment. Immobilized multienzyme systems Biosensors - glucose oxidase, cholesterol oxidase, urease and antibodies as biosensors.	
Suggested readings	
1. Biochemistry, by L. Stryer, WH Freeman and Co.	
2. Lehningers Principles of Biochemistry by Nelson and Cox	
3. Biochemistry by Voet and Voet.	
4. Biochemistry the chemical reactions of living cell by David E	
Metzler	
5. Enzyme a practical introduction to structure mechanism and data analysis by Robert Copeland	
6. Fundamentals of Enzymology – The Cell & Molecular Biology of Catalytic protein by Nicholas Price & Lewis Stevens. Third Edition.	
 7. Joel L. Sussman & Paola Spadon. From Molecules to Medicine. Springer. 8. Protein-Ligand interactions - Methods & Applications by Mark A. Williams & Tina Daviter. Second Edition. Humana Press. 	
9. The Molecules of Life $-$ Physical & Chemical Principles by John Kuriyan.	
${f 10.}$ Fundamentals of Enzyme Kinetics by Athel Cornish-Bowden. 2012. Wiley-Blackwell. Fourth Edition.	
11. Enzyme Technology. by Martin Chaplin and Christopher Bucke. 1990. Cambridge University Press.	
12. Enzymes: principles and biotechnological applications. Essays in	
Biochemistry. 59, 1-41: doi: 10.1042/BSE0590001 byPeter K. Robinson. 2015 13. Enzyme Assays - High-throughput-screening, Genetic selection and	
Fingerpriting by Jean-Luis Reymond. 14. Enzymes-Biochemistry, Biotechnology, Clinical Chemistry by Trevor Palmer,	
Philip L. Bonner. 2007Woodhead Publishing. 15. Methods in Enzymology by Colowick P & Kaplan.	

Course Cod	e: MSBCCC202T	Course Title: Molecular Biology	
Course Crea	dit: 4	Total contact hours: 60 Hrs	
Sr. No.	Sr. No. Course Contents (Topics & subtopics)		Reqd. hours
UNIT I	Chromosome Structure, Mendelian Principles, Mutation and		15 Hrs
	Replication		
	Chromatin – Heter	rochromatin, euchromatin. Histones and non-	
	histone proteins, g	eneral properties of histone, packing density,	

	nucleosomes, size, variable linkers, solenoid structure, packaging	
	of DNA, satellite DNA.	
	Mendelian laws of inheritance: Law of dominance, Law of	
	segregation and Law of independent assortment.	
	Mutation – Types of mutations, mechanism of mutation, mutagenic	
	agents, Ames test, DNA repair and transposable elements.	
	DNA Replication – Concepts of replication initiation, elongation	
	and termination in prokaryotes and eukaryotes, enzymes and	
	accessory proteins involved in DNA replication, Fidelity in	
	replication, synthesis of leading and lagging strand, difference	
	between prokaryotic and eukaryotic replication, Okazaki	
	fragments, replication fork, lagging strand, leading strand.	
UNIT II	Transcription and post transcriptional modifications	15 Hrs
		15 1115
	Mechanisms of Transcription – Prokaryotic transcription; promoters, properties of bacterial RNA polymerase, steps:	
	initiation, elongation and termination. Eukaryotic transcription,	
	promoters, enhancers factors and properties of RNA polymerase I,	
	II and III, post transcriptional modifications, 5' capping, 3' poly A	
	tailing, splicing and editing, Reverse transcription, Inhibitors of	
	transcription.	15 11
UNIT III	Translation and post translation modifications	15 Hrs
	Genetic code: Genetic and biochemical basis of Genetic code, Salient features, Translation in Pro- and Eukaryotes – Translation	
	Salient features Translation in Pro- and Hukarvotes – Translation	
	apparatus, Ribosomes, structure and subunit assembly, adaptor role	
	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs,	
	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation,	
	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors	
	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of	
	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational	
	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications.	15.11
UNIT IV	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression	15 Hrs
UNIT IV	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and	15 Hrs
UNIT IV	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara-	15 Hrs
UNIT IV	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara- , trp operons, attenuation, catabolite repression.	15 Hrs
UNIT IV	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara-, trp operons, attenuation, catabolite repression. Eukaryotic gene regulation: Role of upstream, downstream and	15 Hrs
UNIT IV	 apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara-, trp operons, attenuation, catabolite repression. Eukaryotic gene regulation: Role of upstream, downstream and enhancer elements, cis-trans acting elements in gene expression, 	15 Hrs
UNIT IV	 apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara-, trp operons, attenuation, catabolite repression. Eukaryotic gene regulation: Role of upstream, downstream and enhancer elements, cis-trans acting elements in gene expression, examples and experimental evidences 	15 Hrs
UNIT IV	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara-, trp operons, attenuation, catabolite repression. Eukaryotic gene regulation: Role of upstream, downstream and enhancer elements, cis-trans acting elements in gene expression, examples and experimental evidences Suggested readings	15 Hrs
UNIT IV	 apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara-, trp operons, attenuation, catabolite repression. Eukaryotic gene regulation: Role of upstream, downstream and enhancer elements, cis-trans acting elements in gene expression, examples and experimental evidences Suggested readings 1. Biochemistry, by L. Stryer, WH Freeman and Co. 	15 Hrs
UNIT IV	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara- , trp operons, attenuation, catabolite repression. Eukaryotic gene regulation: Role of upstream, downstream and enhancer elements, cis-trans acting elements in gene expression, examples and experimental evidences Suggested readings 1. Biochemistry, by L. Stryer, WH Freeman and Co. 2. Molecular biology of the gene, by J D Watson,	15 Hrs
	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara-, , trp operons, attenuation, catabolite repression. Eukaryotic gene regulation: Role of upstream, downstream and enhancer elements, cis-trans acting elements in gene expression, examples and experimental evidences Suggested readings 1. Biochemistry, by L. Stryer, WH Freeman and Co. 2. Molecular biology of the gene, by J D Watson, Benjamin/Cummings publ. Co Inc.	15 Hrs
	apparatus, Ribosomes, structure and subunit assembly, adaptor role of tRNA, formation of initiation complex, initiator-tRNAs, aminoacyl-tRNAs, initiating factors, chain elongation, translocation & termination and the role of respective factors involved therein, structure of tRNA, P site, A site, activation of amino acid, Inhibitors of protein biosynthesis, Post translational processing: Proteolytic cleavage, covalent modifications. Regulation of gene expression Regulation of Transcription and Translation – Positive and negative control, Repressor & Inducer, concept of operon, lac-, ara- , trp operons, attenuation, catabolite repression. Eukaryotic gene regulation: Role of upstream, downstream and enhancer elements, cis-trans acting elements in gene expression, examples and experimental evidences Suggested readings 1. Biochemistry, by L. Stryer, WH Freeman and Co. 2. Molecular biology of the gene, by J D Watson,	15 Hrs

4. Genetics-Analysis of genes and genomes, by Daniel L.	Hartl,
Elizabeth W. Jones	
5. Molecular Biology, by David Freifelder.	
6. iGenetics, by Peter J. Russell	
7. Biochemistry, by Geoffrey L. Zubay	

Course Cod	le: MSBCCC203T	Course Title: Plant- Biochemistry and Tissue cu	lture
Course Cree	dit: 4	Total contact hours: 60 Hrs	
Sr. No.	Cou	rse Contents (Topics & subtopics)	Reqd. hours
UNIT I	Photosynthesis an	d photorespiration	15
	Chlorophylls and a	ccessory pigments	
	Photosynthesis-Lig	th and Dark reactions, Schemes-I, II & Z, Cyclic	
	and Non-Cyclic Ph	otophosphorylation, C-3 & C-4 pathways, CAM	
	pathway.		
	Biosynthesis of Sta	arch and Cellulose from Glucose.	
	Photosynthesis in I	Bacteria, Fungi, Algae and Yeast.	
	Photoperiodism		
	-	Enzymes involved in photorespiration, Factors	
	• •	otorespiration, Interaction of photorespiration	
	with other processe		
UNIT II	Plant nutrition an		15
		cro and macronutrients, Transport systems: xylem	
	and phloem		
		n fixation and sulphur assimilation in plants	
	-	e movements in plants	
	-	ones: Biosynthesis and functions of Auxins,	
	-	kines, Abscisic Acid and Ethylene,	
		Polyamines, Jasmonic acid and salicylic acid.	
UNIT III		action to plant tissue culture	15
	History of Plant Ti		
		Organization of Plant Tissue Culture Laboratory-	
	equipments and ins		
		es- Washing and preparation of glasswares,	
		zation, media sterilization, surface sterilization,	
	-	n, precautions to maintain aseptic conditions.	
		Nutritional requirements of explant, PGR and	
		composition of basal M.S. medium and media	
	preparation.		
		chniques- principle, protocol, morphology and	
		genetic variations, applications.	
	-	re Technique- Introduction, principle, protocol,	
	types, growth meas	surement, viability test, synchronization,	

	applications.	
	Organ Culture Technique- principle, protocol, applications, with	
	respect to root tip culture, leaf culture, ovary and ovule culture.	
	Anther and Pollen Culture Technique- principle, protocol, factors	
	affecting, applications.	
UNIT IV	UNIT IV: Techniques in Plant tissue culture	15
	Micropropagation- Introduction, stages of Micropropagation,	
	factors affecting, advantages and applications. Different Pathways of	
	Micropropagation, Axillary bud proliferation,	
	Somatic Embryogenesis: principle, protocol, applications.	
	Organogenesis- principle, protocol, applications.	
	meristem culture.	
	Somaclonal Variation- Introduction, terminology, origin, selection	
	at plant level, selection at cell level, mechanism, assessment,	
	applications and limitations.	
	Plant Protoplast Culture: Principle, protocol for isolation,	
	Mechanical and Enzymatic, protoplast culture methods, viability test	
	applications. Production of Secondary Metabolites- Introduction,	
	types of secondary metabolites, principle, systems of culture,	
	optimization of yield, commercial aspects, applications, limitations.	
	Applications of Plant Tissue culture	
	Suggested readings	
	1.Biochemistry by Lubert Stryer 4th Edition	
	2. Biochemistry by Mathew VanHolde	
	3. Lehningers Principles of Biochemistry by Nelson and Cox	
	4. Plant Physiology by Buchanan	
	5. Biochemistry and Physiology of Plant Hormones, Thomas Moore	
	6. Plant Tissue culture by S. S. Chawla	
	7. Plant Tissue culture by Kalyan Kumar De	

Course Code: MSBCIE201T		Course Title:	
		Instrumentation and analytical technique	es
Course Crea	dit: 4	Total contact hours: 60 Hrs	
Sr. No.	Co	ourse Contents (Topics & subtopics)	Reqd. hours
UNIT I	Acid, Bases, But	ffers and Colligative properties	15

	Ionization, Dissociation, Acidity, Basicity theories of Acid and Bases, Strength of Acids and Bases. pH, pH-dependent functions and structures of bio-molecules. Henderson –Hasselbach Equation, different methods for measurement of pH. Definitions, Factors affecting, measurement of and physiological applications of Osmosis, Osmotic Pressure, Osmoregulation, Adsorption, Colloids, Surface Tension and Viscosity Numerical Problems based on above topics	
UNIT II	Spectroscopic techniques	15
	Beer-Lamberts Law, its verifications and deviations, concept of Absorptions, Transmission, Scattering, Phosphorescence, Fluorescence, Luminescence. Principle Instrumentation, working and application of – U V, Visible and IR Spectroscopy, Turbidometry and Nephlometry. Spectrofluorometric, Flame Spectrophotometry, Atomic Absorption Spectrometry, Luminometry. Principle, instrumentation, working and application of- Nuclear Magnetic Resonance(NMR), Electron Spin Resonance (ESR), Mass Spectrometry, Mossbauer Spectroscopy, Matrix Assisted LASER Desorption, Ionization, Time of Flight-Mass Spectroscopy (MALDI-TOF-MS), Inductively Coupled Plasma Mass Spectrometer (ICP-MS) X-Ray Diffraction Spectra, Optical Rotatory Dispersion, (ORD), Circular Dichroism (CD)	
UNIT III	Radioisotopic and Microscopic techniques	15
	Basic principles, instrumentation and application of Compound, Phase contrast, Fluoroscence Microscope, SEM, TEM, Confocal and atomic force microscopy. Nature of radioactivity & its detection and measurements of Radioactivity, Radioactive decay, Interaction of radioactivity with matter GM Counter, Scintillation Counter, Counting Pulse Height Analyser. Isotope Dilution, Analysis, Autoradiography, Application of Radioisotopes in Biological Science Safety Measures in Handling Isotopes	
UNIT IV	Centrifugation, Chromatography and electrophoreses	15

General scheme for purification of Biomolecules		
Basic principles of sedimentation, relation between g, rpm and		
Svedberg constant. Principles, Instrumentation, Working and		
Applications of		
Preparative and Analytical Ultracentrifugation, Isopycnic		
Centrifugation, Rate Zonal Centrifugation		
Basic Principles, Instrumentation, working and applications of		
partition chromatography (Paper), Absorption Chromatography		
(TLC, HPTLC, Column), Affinity Chromatography, Ion		
Exchange Chromatography, Gel filtration chromatography		
Basic Principles, Instrumentation, working and applications of		
Permeation Chromatography, Gas-Liquid Chromatography		
(GLC), High Pressure Liquid Chromatography (HPLC), High		
Resolution Liquid Chromatography Mass Spectrometry (HR		
LC-MS)		
Basic principles, factors affecting electrophoresis. General principle	es.	
instrumentation, working and applications of electrophoretic		
techniques-zone, Disc, Capillary, 2-D, Pulsed Field Gel, Diagonal,		
Isoelectric Focussing, immune-electrophoresis		
Suggested readings		
1. Van Holde KE – Principles of Physical Biochemistry, Prentice Hall, 1998		
 Van Holde KE – Finiciples of Filystear Biochemistry, Frence Han, 1996 Wilson K & Walker J – Principles and Techniques of Practical Biochemistry. 		
Cambridge Low Price Edition		
3. Frelfelder D- Physical Biochemistry		
4. Skoog Douglas A – Principles of Instrumental Analysis Harcourt Brace publis	hore	
London	511C1 S,	
5. Harvey David – Modern Analytical Chemistry, International edition, McGraw	. Ц :11	
Boston	, 11111,	
6. Srivastava VK and Kishore K – Introduction to chromatography: Theory & Pr	actica	
S Chand & Co, New Delhi	actice,	
	a And	
7. Holme David J – Problem solving in analytical biochemistry, H & Longman Sc. And		
Tech, Essex 8 Brave Robert D. Introduction to Instrumental Analysis McGrayy Hill Book (Co New	
8. Brave Robert D – Introduction to Instrumental Analysis, McGraw Hill Book C	LU, INCW	
York 9. Ninfa Alexander J and Ballou David P – Fundamental Laboratory Approaches	for	
Biochemistry and Biotechnology, Fitzgerald Science Press, Bethesda	5 101	
	Dalh	
10. Upadhyaya et al – Biophysical Chemistry, Himalaya Publishing Home, New		
11. Rodney Boyer Experimental Biochemistry Pearson Publ. Sawheny and Singh	1	
12. Practical Biochemistry by David Plummer		
13. Physics of Diagnostic images by Dowsett.		
14. Medical imaging by Christenson.		

Course Code: MSBCSE201T	Course Title: Bioinformatics	
Course Credit: 4	Total contact hours: 60 Hrs	

 Types of Databases. Biological databases and pitfalls of them. Information \ retrieval from biological databases UNIT II Sequence Alignment- Pairwise and multiple sequence alignment. Database similarity searching- BLAST \ FASTA □Scoring functions. Significance of sequence alignment. HMM (Hidden Markov Model). UNIT III Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. Promoter prediction in Prokaryotes & Eukaryotes. Gene expression profiling and its applications. Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein structure visualization Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	Reqd. hours
 Biological databases and pitfalls of them. Information \ retrieval from biological databases UNIT II Sequence Alignment- Pairwise and multiple sequence alignment. Database similarity searching- BLAST \ FASTA □Scoring functions. Significance of sequence alignment. HMM (Hidden Markov Model). UNIT III Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. Gene expression profiling and its applications. Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein structure prediction -Globular protein & transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics: a Practical 	15 Hrs
• Information \ retrieval from biological databases UNIT II • Sequence Alignment- Pairwise and multiple sequence alignment. • Database similarity searching- BLAST \ FASTA □ Scoring functions. • Significance of sequence alignment. • HMM (Hidden Markov Model). UNIT III • Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. • Promoter prediction in Prokaryotes & Eukaryotes. • Gene expression profiling and its applications. • Microarray technology. Human genome analysis UNIT IV • Structural Bioinformatics : • Protein structure visualization • Protein secondary prediction -Globular protein & transmembrane proteins. • Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
UNIT II • Sequence Alignment- Pairwise and multiple sequence alignment. 1 Database similarity searching- BLAST \ FASTA □ Scoring functions. • Significance of sequence alignment. 1 • MMM (Hidden Markov Model). • HMM (Hidden Markov Model). 1 UNIT III • Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. 1 • Promoter prediction in Prokaryotes & Eukaryotes. • Promoter prediction in Prokaryotes & Eukaryotes. 1 UNIT IV • Structural Bioinformatics : 1 • Protein structure visualization • Protein structure visualization 1 • Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. 1 Suggested readings 1 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
 alignment. Database similarity searching- BLAST \ FASTA \ Scoring functions. Significance of sequence alignment. HMM (Hidden Markov Model). UNIT III Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. Promoter prediction in Prokaryotes & Eukaryotes. Gene expression profiling and its applications. Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein structure visualization Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics: a Practical 	
 Database similarity searching- BLAST \ FASTA □Scoring functions. Significance of sequence alignment. HMM (Hidden Markov Model). UNIT III Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. Promoter prediction in Prokaryotes & Eukaryotes. Gene expression profiling and its applications. Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein secondary prediction –Globular protein & transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics: a Practical 	15 Hrs
functions.Significance of sequence alignment.HMM (Hidden Markov Model).UNIT IIIGene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes.Promoter prediction in Prokaryotes & Eukaryotes.Gene expression profiling and its applications.Microarray technology. Human genome analysisUNIT IVStructural Bioinformatics :Protein structure visualizationProtein structure visualizationProtein secondary prediction –Globular protein & transmembrane proteins.Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction.Suggested readings1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
 Significance of sequence alignment. HMM (Hidden Markov Model). UNIT III Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. Promoter prediction in Prokaryotes & Eukaryotes. Gene expression profiling and its applications. Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein structure visualization Protein secondary prediction –Globular protein & transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
 HMM (Hidden Markov Model). UNIT III Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. Promoter prediction in Prokaryotes & Eukaryotes. Gene expression profiling and its applications. Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein secondary prediction –Globular protein & transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
UNIT III • Gene and Promoter prediction- Gene prediction in Prokaryotes & Eukaryotes. 1 Promoter prediction in Prokaryotes & Eukaryotes. • Promoter prediction in Prokaryotes & Eukaryotes. 1 • Gene expression profiling and its applications. • Microarray technology. Human genome analysis 1 UNIT IV • Structural Bioinformatics : 1 • Protein structure visualization • Protein structure visualization 1 • Protein secondary prediction –Globular protein & transmembrane proteins. 1 • Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. 1 Suggested readings 1 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
 Promoter prediction in Prokaryotes & Eukaryotes. Gene expression profiling and its applications. Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein secondary prediction –Globular protein & transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. Pervsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	15 Hrs
 Gene expression profiling and its applications. Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein secondary prediction –Globular protein & transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. Pervener J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
 Microarray technology. Human genome analysis UNIT IV Structural Bioinformatics : Protein structure visualization Protein secondary prediction –Globular protein & transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
UNIT IV• Structural Bioinformatics : • Protein structure visualization • Protein secondary prediction –Globular protein & transmembrane proteins. • Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction.1Suggested readings1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
 Protein secondary prediction –Globular protein & transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	15 Hrs
 transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
 transmembrane proteins. Protein tertiary structure prediction Homology Modelling, Threading, Fold recognition, Ab Initio protein structure prediction. Suggested readings 1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
Threading, Fold recognition, Ab Initio protein structure prediction.Suggested readings1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
prediction.Suggested readings1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
1.Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
 Analysis (Second Ed.). Cold Spring Harbor Laboratory Press. 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
 2.Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
 Hoboken NJ: Wiley-Blackwell. 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
 3.Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical 	
University Press. 4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
4.Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical	
Guide to the Analysis of Genes and Proteins. New York: Wiley-	
Interscience.	
5.Bourne PE and Gu J (2009). Structural Bioinformatics.	
Hoboken, NJ: Wiley-Liss.	
6.Lesk AM (2004). Introduction to Protein Science: Architecture,	
Function, and Genomics. Oxford: Oxford University Press.	

Semester- II Practical

MSBCLB201P

- 1. To determine the enzyme activity of
 - i) α-Amylase.
 - ii) β-Amylase.
- 2. To investigate the effect of activator/co-factor on enzyme activity.
- 3. To investigate the effect of inhibitor on enzyme activity.
- 4. To study the partial purification of enzyme by salt precipitation.
- 5. To determine the specific activity of Acid/Alkaline phosphatase.
- 6. To determine the effect of pH on enzyme activity.
- 7. To determine the effect of temperature on enzyme activity.
- 8. Determination of Km of enzyme
 - i) Amyloglucosidase
 - ii) Invertase
- 9. To isolate the enzyme from sweet potato.

10. To study the immobilization of enzyme by gel entrapment method.

MSBCLB202P

- 1. Estimation of DNA by DPA method.
- 2. Estimation of RNA by orcinol method.
- 3. Isolation of genomic DNA from plants,/animals / microorganisms.
- 4. Isolation of RNA from Baker's yeast.
- 5. Staining of cellular DNA and RNA
- 6. Separation of DNA/RNA by gel electrophoresis technique.

MSBCLB203P

- 1. Extraction and quantification of photosynthetic pigments.
- 2. Isolation and characterization of symbiotic bacteria from root nodules.
- 3. Enrichment, isolation and characterization of nonsymbiotic bacteria from soil.
- 4. Colorimetric estimation of Indole-3 Acetic Acid.
- 5. Separation of chlorophyll pigments by adsorption chromatography.
- 6. Separation of amino acids/ sugars by paper chromatography.
- 7. Separation of oils by TLC.
- 8. Demonstration of SDS PAGE techniques of protein purification

MSBCLB204P

- 1 Structure of proteins identification of chains helices, special groups, metal ions etc. CATH / SCOP classification of a given protein.
- 2 Motif finding- Prosite
- 3 BLAST
- 4 MSA- Clustal Omega & Phylogenetic Tree- Tree view
- 5 Protein Structure Visualizer- PyMOL
- 6 Homology Modelling- MODELLER.

Suggested Readings for Practical syllabus

1. J Jayaraman-Laboratory Manual in Biochemistry, New age international publishers.

2. Holme David J – Problem solving in analytical biochemistry, H & Longman Sc. And Tech, Essex

3. Ninfa Alexander J and Ballou David P – Fundamental Laboratory Approaches for Biochemistry and Biotechnology, Fitzgerald Science Press, Bethesda

4. Upadhyaya et al – Biophysical Chemistry, Himalaya Publishing Home, New Delhi

5. Rodney Boyer Experimental Biochemistry Pearson Publ. Sawheny and Singh

6. Practical Biochemistry by David Plummer

7. Henry Richard et al – Clinical Chemistry, Principles and Techniques, 2nd edition, Harper and Row, New York

8. Kamal SH – Clinical Biochemistry for Medical Technologies, Churchill Livingston, London

9. Rodrigues Fred K Carbohydrate chemistry with clinical correlations, New Age International, New Delhi

10. John Bernard Henry, Clinical Diagnosis and Management by Laboratory Methods, Saunders publications, 20th edition

11. Total synthesis of natural products, Vol I-John Apsinon

12. Chemical Process Industries – Norris Shreeve& Joseph Brink

13. Roger's Industrial Chemistry Vol I & II - Edited by CC Furnas

14. Animal Biotechnology – Edited by AK Srivastava, oxford & IBH publishing Co, New Delhi, 2005

15. Proteins, Biochemistry & Biotechnology – Gary Walsh, John Wiley & Sons, 2002
16. Biotechnology, An Introduction – Susan R Barnum, Vikas Publishing House, International Student Edition

17. Enzymes, Biochemistry, Biotechnology, Clinical Biochemistry – Trevor Palmer, First East-West Press Ed. 2004.

18. Mount DW (2004). Bioinformatics: Sequence and Genome Analysis (Second Ed.). Cold Spring Harbor Laboratory Press.

19. Pevsner J (2015). Bioinformatics and Functional Genomics. Hoboken NJ: Wiley-Blackwell.

20. Lesk AM (2002). Introduction to Bioinformatics. Oxford University Press.

21. Baxevanis AD and Ouellette BF (2001). Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.

22. Bourne PE and Gu J (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.

23. Lesk AM (2004). Introduction to Protein Science: Architecture, Function, and Genomics. Oxford: Oxford University Press.

* Teachers may suggest alternative/additional practical/references.